Exploiting Decision Trees in Product-based Fuzzy Neural Modeling to Generate Rules with Dynamically Reduced Dimensionality
نویسندگان
چکیده
Decision trees are commonly employed as data classifiers in various research fields, but also in real-world application domains. In the fuzzy neural framework, decision trees can offer valuable assistance in determining a proper initial system structure, which means not only feature selection, but also rule extraction and organization. This paper proposes a synergistic model that combines the advantages of a subsethood-product neural fuzzy inference system and a CART algorithm, in order to create a novel architecture and generate fuzzy rules of the form "IF THEN IF", where the first "IF" concerns the primary attributes and the second "IF" the secondary attributes of the given dataset as defined by our method. The resulted structure eliminates certain drawbacks of both techniques and produces a compact, comprehensible and efficient rulebase. Experiments in benchmark classification tasks prove that this method does not only reduce computational cost, but it also maintains performance at high levels, offering fast and accurate processing during realtime operations.
منابع مشابه
Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods
In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملA Novel Approach on Designing Augmented Fuzzy Cognitive Maps Using Fuzzified Decision Trees
This paper proposes a new methodology for designing Fuzzy Cognitive Maps using crisp decision trees that have been fuzzified. Fuzzy cognitive map is a knowledge-based technique that works as an artificial cognitive network inheriting the main aspects of cognitive maps and artificial neural networks. Decision trees, in the other hand, are well known intelligent techniques that extract rules from...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کامل